bankcarriere.nl

Oplossingen voor AML-backtesting

Nieuws
26-03-2025
Patrick Özer
In theorie zou backtesting in AML-modellen financiële instellingen moeten helpen hun modellen te verfijnen, waardoor het aantal true positives toeneemt en false positives afnemen. In de praktijk blijkt dit lastig. Waarom kunnen AML-modellen niet op dezelfde manier profiteren van backtesting als bijvoorbeeld kredietmodellen?

Anti-Money Laundering (hereinafter: ‘AML’) is a required component of the financial industry’s ongoing efforts to detect and prevent financial crimes. Most financial institutions rely on rule-based and/or machine learning models to identify suspicious activity. However, the effectiveness of these models is directly tied to the quality of feedback they receive. One key method to refine models, in general, is through backtesting, which evaluates model performance by comparing historical data with model outcomes. This process not only aids in the identification of potential weaknesses, but also allows for adjustments to improve overall performance. For instance, in credit risk models, financial institutions analyze past loan data, including borrower characteristics, loan terms, and repayment histories to validate the accuracy and reliability of models predicting loan default probability.

In theory, backtesting in AML models should allow financial institutions to fine-tune their models, increasing true positives and reducing false positives. However, in practice, they often face significant challenges when it comes to conducting proper backtesting. Why can AML models not benefit from backtesting the same way that, for example, credit models can?

The challenge – lack of feedback on alerts

A significant challenge in the backtesting process is the lack of ground truth for model outcomes. When a transaction monitoring (hereinafter: ‘TM’) model identifies unusual transactions, they are initially reviewed by an internal alert handling team and a compliance department. If deemed ‘unusual’, these alerts are escalated to relevant authorities, such as the Financial Intelligence Unit (hereinafter: ‘FIU’). However, financial institutions rarely receive follow-up information on whether these alerts resulted in investigations, prosecutions, or whether they were ultimately classified as false positives. Additionally, when no feedback is received, this does not automatically justify the position that the alert should ultimately be considered a false positive. Consequently, financial institutions are unable to utilize this crucial feedback as ground truth for the refinement of their models. This limitation results in challenges such as the inability to enhance detection model accuracy, and higher rates of false positives. Regulators like the Dutch central bank (DNB) expect institutions to demonstrate compliance with strict laws, such as the Anti-Money Laundering and Anti-Terrorist Financing Act (Wwft) and the Sanctions Act (SW), but without reliable backtesting, this is certainly challenging.

[....]

Lees verder op: KPMG

Gerelateerde vacatures

Geïnteresseerd in een carrière bij organisaties in ditzelfde vakgebied? Bekijk hieronder de gerelateerde vacatures en vind de perfecte match voor jou!
ABN AMRO
5.847 - 8.353
Medior
Eindhoven
Waar denk jij aan bij een volgende stap? Maak werk van je doelen en ontwikkel je zowel professioneel als persoonlijk. Vertel ons jouw verhaal. Wij zijn benieuwd!
Univé
Max. 3.750
Junior
Dordrecht
Als Medewerker Verzekeringen & Hypotheken bij Advema verwerk je offertes en polissen, bewaak je administratie en documentatie rond zakelijke schadeverzekeringen en ondersteun je bij hypotheekdossiers door voorbereiding, coördinatie en opvolging,...
Rabobank
3.447 - 4.923
Medior
Rotterdam
Als Acceptant Intermediair Rotterdam bij Rabobank beoordeel je complexe hypotheekaanvragen, bewaak je kredietwaardigheid en risico, breng je offertes uit en verbeter je dossiers, processen en samenwerking met het intermediair.
NN
3.517 - 5.025
Junior, Medior
The Hague
Als KYC Analist bij NN Bank beoordeel je klantsignalen en voer je diepgaande Customer Due Diligence onderzoeken uit om financiële criminaliteit te voorkomen. Je analyseert ongebruikelijke transactiepatronen en risicosignalen, en...