bankcarriere.nl

A Comparison of Machine Learning Techniques for Predicting Payment Probability

Nieuws
10-11-2025
Marco Benalcázar
This study explores machine learning to improve credit risk scoring, reducing feature engineering complexity and mitigating declining model accuracy as arrears progress, enhancing payment prediction and supporting effective collection strategies.

Abstract

In credit risk, scoring models based on logistic regression have been developed to optimize the default risk assessment. However, these models require complex feature engineering, and their accuracy worsens as the arrears progresses. This study proposes the use of machine learning techniques (XGBoost and artificial neural networks) to generate scores in different arrears segments (No Arrears Segment, 1–30 Days of Arrears Segment, 31–90 Days of Arrears Segment, and All Segments). The Kolmogorov–Smirnov (KS) metric is used to assess the efficiency and predictive power of the models. To ensure the accuracy and reliability of the models, a five-step methodology is employed. It starts with the formulation of the problem, followed by the selection of a data sample and definition of the target variable, then a descriptive analysis of the data is performed to facilitate the data cleaning. Subsequently, the models are trained and tested, and finally, the results are analyzed, and the models obtained are interpreted. The results show that both XGBoost and artificial neural network models outperform logistic regression in most of the arrears segments. In the No Arrears Segment, the XGBoost model is the best with KS = 63.36%. In the 1–30 Segment, XGBoost is also the best with KS = 51.38%. In the 31–90 Segment, the artificial neural network model is the best with KS = 38.77%. Finally, with all segments of arrears, the XGBoost model is again the best with KS = 74.05%.

[....]


Lees verder op: mpdi.com

Gerelateerde vacatures

Geïnteresseerd in een carrière bij organisaties in ditzelfde vakgebied? Bekijk hieronder de gerelateerde vacatures en vind de perfecte match voor jou!
Achmea
4.506 - 6.356
Medior
Meerdere locaties
Als Teamlead Quality Checkers bij Achmea leid je een team binnen het KYC-domein, waar je verantwoordelijk bent voor kwaliteitsborging van klantonderzoeken, procesverbetering en teamontwikkeling. Je werkt samen met stakeholders om...
Carbon Equity
Marktconform
Medior, Junior
Amsterdam
Als Investor Operations Analyst bij Carbon Equity ben je verantwoordelijk voor het soepel laten verlopen van investeerder onboarding en KYC/CDD processen. Je waarborgt de kwaliteit en nauwkeurigheid van investeerdersdata en...
Rabobank
3.314 - 4.733
Junior
Amsterdam
Als Junior New Business Banker MKB voor Amsterdam bij Rabobank acquireer je nieuwe MKB-klanten, bouw je relaties in stedelijke netwerken en digitale community’s, signaleer je kansen/risico’s en handel je financieringsaanvragen...
ING
7.499 - 11.925
Senior
Amsterdam
Als Sectordirecteur Building & Industry Regio Noord-West bij ING Business Banking NL leid je het Client Service Team, stuur je op groei, klanttevredenheid en acquisitie, borg je samenwerking en kennisdeling,...